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A Counterexample in Linear-Quadratic Games: 
Existence of Nonlinear Nash Solutions 1 

T. BASAR 2 

Communicated by Y. C. Ho 

A b s t r a c t ,  Via a 2-stage linear-quadratic 2-person nonzero-sum 
game, we show that such decision problems might admit nonlinear 
Nash solutions. As compared with the linear strategy, a nonlinear 
Nash policy might lead to a better performance for at least one of 
the players. 
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I, I n t r o d u c t i o n  

Hitherto, it has been a common belief in controt and game theory 
literature that 2-person deterministic decision problems with linear 
state dynamics, quadratic payoff functions, and with the classical in- 
formation structure admit only affine Nash equilibrium solutions (see, 
e.g., Refs. 1-3). Attempts have been made in Refs. I and 2 to prove 
the uniqueness of affine Nash solutions for such decision problems and 
for general dosed-loop (CL) strategy spaces. However, authors of both 
references are sidetracked by their assumptions of linearity and nome- 
mory restriction on admissible strategies in their proof of uniqueness 
of the Nash solutions. In this paper, we will show that it is not possible 
to obtain a uniqueness result for dynamic nonzero-sum games, with the 
classical CL strategy space for at least one of the players. We actually 
provide a counterexample and report on the existence of a class of 
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nonlinear equilibrium solutions for a simple 2-stage l inear-quadratic 
nonzero-sum (LQNZS)  game. The  example given in the paper is the 
simplest L Q N Z S  game which admits nonlinear Nash solutions. 

2. L Q N Z S  G a m e  a n d  D e r i v a t i o n  o f  N o n l i n e a r  N a s h  Solutions 

Consider the 2-stage L Q N Z S  game defined by the difference 
equations 

x(1) = x(0) + u(0) + v(0), x(0) = Xo, (I-1) 

x(2) = x(1) + u(1), (1-2) 

where all variables are scalar and take their values in ~1. u(0) and u(1) 
are control variables of Player 1 at stages zero and one, respectively, 
and v(0) is the control variable of Player 2 at stage zero. Player 1 has 
access to x 0 at stage zero and both x 0 and x(1) at stage one. Player 2 acts 
only at stage zero and has access to x o . We denote b y / ' 0  the class of all 
measurable maps from ~ onto NI,  by ./'1 those that map ~1  × ~ 
onto ~1. At stage zero, Players 1 and 2 pick, respectively, V0(')~ P0,  
72(') ~ P0 ;  and, at stage one, Player 1 picks Yl(.,-) e / ' 1 .  Then,  the 
costs incurred to Players 1 and 2 are given by J1 and J2,  respectively, 
where 

J~ = x2(2) + u2(1) -}- uS(0), (2-1) 

J~ = xS(2) + vS(0) -]- fluS(l), fi >~ 0, (2-2) 

with 

u(O) = 7o(Xo), u(l) = 71(x(1), Xo), v(0) = 72(xo). 

With these definitions, {7o*~/~o, 71 * e  £'~, 72 *E  Fo} constitutes 
a Nash strategy triple to the game posed above, if it satisfies 

L(7o*, rl*, 7~*) <~ L(7o, 7~ , ~*), (3-1) 

L(7o*, rl*, 72*) ~< L(7o*, 71", 75), (3-2) 

for all 7o ~ Po ,  71 ~ / 1 ,  V2 E F o . 
Now, for any Nash equilibrium triple {u(1) = yl(x(1), Xo), u(0) = 

7o(Xo), v(0) == 72(Xo)}, the dependence of 71(-,-) on x(1) and x o will be 
through 

71(X(1), X0) = --½X(I) -@ ~(X(1), Xl), (4-1) 
where 

x 1 = x o + yo(Xo) + 7s(Xo), (4-2) 
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and ~b(., .) is any scalar function of two variables with the property that 
~b(y, y) = 0 V y ~ ~1. We note that, for fixed )'o('), 72('), the strategy 
defined by (4-1) is unique in value (which is --½Xl) but  nonunique in 
representation as a control policy of Player 1 at stage one. I f  we now take 
~b(., .) to be ~b(y, z ) =  ( y 2  z2)p, where p is any scalar parameter, 
the optimal Nash strategies ~,0*(x0), 72"(xo) that correspond to this 
functional form will be given by (after some rather extensive manipula- 
tions, details of which are given in the Appendix) 

70*(Xo) = [1/12p(1 --/3)][[~(1 q-/3) q- 9/21 

- -  ~/{[~(1 q-/3) q- 9/2] 2 q- 3@(1 --/3) x0} ], (5-1) 

y2*(xo) = -- x o --  [l/4p(1 --/3)1[[~(1 q-/3) q- 9/2] 

-- ~/{[~(1 q-/3) q- 9/212 + 36p(1 --  3) x0}], (5-2) 

provided that 

p(1 --/3) =/= 0, (5-3) 

[~(1 q-/3) q- 9/2] 2 -t- 3@(1 --/3) x 0 >~ 0. (5-4) 

When/3 = 1, (5-3) is not satisfied, and it turns out that, for this special 
case, it is not possible to find a nonlinear Nash solution. The  reason 
for this singularity in the Nash solution is that, when/3 = 1, the original 
game can be converted into an equivalent team problem (standard LQ 
optimal regulator problem) which is well-known to admit a unique linear 
solution. We note that, with /3 .,4 1 and { x 0 t ~< M for any arbitrary 
but fixed positive constant M, it is always possible to find a scalar p such 
that conditions (5-3) and (5-4) are satisfied. Hence, we have the following 
theorem. 

T h e o r e m  2.1. For the 2-person L Q N Z S  game posed and with 
fi ~ 1, I Xo I ~< M, there exist nonlinear Nash equilibrium solutions. One 
such solution set is given by 

u*(1) = --½-x(1) + px2(1) --p[x o + yo*(Xo) + ~,.2*(Xo)] 2, (6-1) 

u*(O) = yo*(xo), (6-2) 

v*(O) = y2*(xo), (6-3) 

where 7'o*('), 9/2*(") are given by (5-1) and (5-2), respectively, and p is 
scalar satisfying 

0 < p(1 --/3) ~ [(1 q- fi)/4 + 3/212/4M 
or  

--[(1 q-/3)/4 + 31212/4M ~< p(t --/3) < O. 
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P r o o f .  This is a direct consequence of the discussion given prior 
to the statement of Theorem 2.1. The Nash property of the triple (6) 
can also be verified directly by showing that it satisfies Inequalities 
(3). The conditions on p merely ensure that Ineq. (5-4) is satisfied. 

3. C o m p a r i s o n  of  Di f fe ren t  Nash  Cos ts  and  Discuss ion  

Let us now assume that /3 = 0 and determine the optimal Nash 
costs, corresponding to these nonlinear Nash strategies, as functions of 
the parameter p. Substituting (6) into (2), with/3 = 0, we have 

J~*(p) = (49/16pz)(1/8){-1 + ~¢/[1 + (64p/49) x ~ o1}", (7-t) 

J2*(p) = (1/16)(49/16pz){-1 + ~/[I + (64p/49)Xo]} 2 

+ [(21/1@){-1 + ~/[1 ÷ (64/)/49) x0] } - Xo}] 2. (7-2) 

The closed-loop no-memory Nash solution, however, is given by (with 
fi = 0) [this corresponds to the solution given in Refs. 1-3 for the 
continuous-time version of the problem] 

u*(1) = --½x(1), u*(0) -- --{x 0 , v* = --{x0, (8-1) 

and the corresponding unique Nash costs under this no-memory 
assumption are 

j*  = 0.2495x02, (8-2) 

J* = 0.102x02. (8-3) 

Comparing (8) with (7) we observe that Player 1 does much better with 
a nonlinear solution (for large values of p) than he does with the linear 
solution given by (8-1), since JI*(P) --~ 0 in the limit asp --+ or. Referring 
back to (2-1), we note that the minimum possible value of ]1 is zero and, 
hence, Player 1 does the best that he can possibly do, with the nonlinear 
strategy (6-1) and (6-2) for large values ofp .  However, it can be shown 
that the nonlinear solution does not bring any advantage to Player 2 
and he does worse with (6-3) than he would do with (8-1). Consequently, 
Player 2 would insist on sticking to a linear strategy, hence creating an 
ambiguous situation which necessitates communication of some kind 
between the two players, in order to arrive at an acceptable compromise. 

It should be clear from the above that the method used to obtain 
the nonlinear Nash strategies is not limited only to the 2-stage problem 
considered in the paper, but can be used to obtain nonlinear solutions 
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for multistage LQNZS games with the classical CL information structure 
for at least one of the players. This implies that equilibrium solutions 
of deterministic multiperson-multiobjective decision problems will not 
be unique in general, which is a serious threat to the validity of the 
existing resutts in the literature on game theory. 

4. A p p e n d i x  

Substituting (4-1) with ~(y ,  z )  = (y2 _ z=)p into J ,  and J~, we have 

J~(u(O), v(O)) = [½x(1) + px~(1) - ~ p ] ~  + u2(O) -~-[p~ -px2(1) + ½x(1)] 2, 

(9-1) 

L(.(0), v(0)) = [½x0) + px~(1) - p e ? p  + ~(0) + 3[~?p -px~(1) + ~x0)] ~. 

(9-2) 

Reaction curves of Players 1 and 2 can be found by solving, respectively, 

dJ1/du(O ) = [½x(1) + pxZ(1) -- ~Zp][l -? 4px(1)] 

+ 2u(0) + [ ~ p  --px2(1) + ½x(1)][1 -- 4px(1)] = 0, (10-1) 

dJ2/dv(O ) = [½x(1) + px~(1) -- p£12][1 @ 4px(l)] 

+ 2v(0) + ~[x?p --px2(1) + ½41)][1 --4px(1)] = 0. (lo-2) 

Intersection points of these reaction curves determine the Nash strategies 
for the static game (9), as functions of Yo and Y2 • Now, if we want to 
obtain the Nash strategies to the original dynamic game, it will be 
sufficient to replace u(0) by 7o and v(0) by 73 in (10) and solve for common 
solutions to the resulting equations, In  fact, making the substitutions in 
(I0) will resuk in the simpler expressions 

~1 +27o = 0, 

½~i(i + / 3 )  + 2~?p( l  - 5) + 273 = o, 

(11-1) 

(11-2) 

where xl is defined by (4-2). 
A common solution to (11) is given by (5-1) and (5-2), and the 

conditions of intersection of the reaction curves are (5-3) and (5-4). It 
is not difficult now to see that (5-1), (5-2), and (6-1) satisfy Inequalities 
(3) and, hence, constitute a Nash equilibrium solution to the problem. 

8o9/~4/4-4 
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